

[image: image1.wmf]
Microsoft ActiveX Data Objects
Version 2.7 and Microsoft Data Engine Version 1.0
Migrating from DAO and ODBCDirect to ADO

Microsoft Product Support Services White Paper

Written by Yilei Wang

Published on August 19, 2002

Abstract

This white paper provides information about a migration path for users who want to use ActiveX Data Objects (ADO) instead of Data Access Objects (DAO) and ODBCDirect to access SQL Server or Microsoft Desktop Engine (MSDE) databases.
This white paper describes DAO and ODBCDirect, and ADO components, and compares the object models of these two technologies. It also maps the methods and properties of DAO and ODBCDirect to the methods and properties of ADO. This white paper helps you revise application code to use ADO (rather than DAO and ODBCDirect) to connect to SQL Server and MSDE database engines.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

The example companies, organizations, products, people and events depicted herein are fictitious. No association with any real company, organization, product, person or event is intended or should be inferred.

 2002 Microsoft Corporation. All rights reserved.

Microsoft, ActiveX, and MSDN are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Contents

1Introduction

2Object Models

2DAO and ODBCDirect

2ADO

4Properties and methods mapping between DAO and ODBCDirect and ADO

7Common Operations

7Working with Cursors

9Opening Asynchronous Connections

9DAO

9ADO

10Running Asynchronous Queries

10DAO

11ADO

12Using Batch Optimistic Updating

12DAO

13ADO

14Working with Stored Procedures

14DAO

15ADO

17For More Information

Introduction

Data Access Objects (DAO) 3.5 technology provides two paths to access Open Database Connectivity (ODBC) data sources. The first is through the JET database engine, which is not the most efficient way to deal with intelligent database engines such as Microsoft® SQL Server™. ODBCDirect is the second path that bypasses the JET database engine, and provides direct access to the server by connecting through ODBC application programming interface (API).

DAO permits users to consume only JET and ODBC data sources; however, ADO provides a lot of flexibility to users to consume all OLE DB data sources. As long as you have Microsoft OLE DB provider as a data source, ADO connects and communicates with the server. Microsoft provides several OLE DB providers through Microsoft Data Access Components (MDAC) including OLE DB Provider for ODBC Drivers and OLE DB Provider for SQL Server (SQLOLEDB). For additional information about MDAC, visit the following Microsoft Web site:

http://www.microsoft.com/data/
You can also develop your own OLE DB providers for proprietary data sources. ADO is designed to access and to work with data in a relational database server and other non-relational data stores through OLE DB providers.

ADO provides the following two methods to access a SQL Server database:

· The preferred method, is to use OLE DB Provider for SQL Server to connect to the database from ADO. With this method, SQL Server exposes significant native functionality that is based on the native OLE DB Provider for SQL Server and provides users with faster and better access.

Provider=MSDASQL.1;Persist Security Info=False;Data Source=mytestDsn;Initial Catalog=Northwind
Notice the keyword Provider in the connection string. MSDASQL is not a SQL Server Provider. It is an OLE DB Provider for ODBC DriversObject Models.

· The second method is to use OLE DB Provider for ODBC Drivers to connect to the database. This method uses the SQL Server ODBC Driver. The connection string looks similar to the following:
Moreover, ADO object model has fewer objects, but has more properties, methods, and method arguments than DAO and ODBCDirect. ADO is thread-safe, but DAO is not. Therefore, do not use DAO in Active Server Pages (ASP) pages or in multithreaded applications.

Note If you typically migrate from DAO and the Microsoft JET database engine to ADO and the JET database engine, see the “Migrating from DAO to ADO Using ADO with the Microsoft JET Provider” white paper at the following MSDN®, Microsoft Developer Network Web site: http://msdn.microsoft.com/library/techart/daotoadoupdate.htm
Note For the sake of brevity in this paper, MSDE and SQL Server engine terminology may be used interchangeably, but most of the information provided here applies to both database engines.

DAO and ODBCDirect

Figure 1 shows the object hierarchy for ODBCDirect workspaces. All DAO objects are referenced from the base DBEngine object. It contains both JET and ODBCDirect workspaces. The object model for an ODBCDirect workspace includes a subset of the objects in a JET workspace, with the addition of a new object that is named the Connection object. You can connect to an ODBC data source through the Connection or the Database objects, but the Database object in an ODBCDirect workspace does not support all of the functionality of a Connection object, such as asynchronous connections, asynchronous queries, and QueryDef objects. The QueryDef object represents a temporary definition of a query in an ODBCDirect workspace. You can specify parameters through the QueryDef object to execute stored procedures. The Recordset object represents the records that result from running a query on a Connection object or a Database object.

Figure 1

[image: image2.png]

ADO

Unlike DAO and ODBCDirect object model, ADO is less hierarchical, as shown in Figure 2. You can create most of the objects in ADO without calling a function on another object to generate the objects. ADO has no equivalent to the DAO DBEngine and Workspace. The Connection object is your connection to the database. It is at the top of the lenient hierarchy of ADO objects comparable to the DAO Database or Connection object. The Command object is designed to help you work with queries, which is similar to the QueryDef object in DAO. The Recordset object contains the results of your query, which is equivalent to the DAO Recordset object. Each column is stored in a Field object in the Fields collection of the Recordset. ADO object model is more flexible because you can execute a command without explicitly creating a Connection object. You can open a Recordset directly from a Command object or even without using either a Connection object or a Command object.

Figure 2

[image: image3.png]Connection

H Erors Error
L[Properties Property.
Command

HParameters Parameter
L[Properties Property.

Field
L[Properties Property.
Record

== Field

Stream

Properties and methods mapping between DAO and ODBCDirect and ADO

Table 1 is a reference to determine how to map DAO and ODBCDirect properties and methods to ADO properties and methods. This is not a complete list, and is not intended to imply a direct, one-to-one mapping between the listed properties and methods. Subtle differences may exist between the mapped properties and methods.

Table 1

	DAO Object
	Property/Method
	ADO Object
	Property/Method

	DBEngine
	LoginTimeout
	Connection
	ConnectionTimeout

	DBEngine
	Version
	Connection
	Version

	DBEngine
	BeginTrans
	Connection
	BeginTrans

	DBEngine
	CommitTrans
	Connection
	CommitTrans

	DBEngine
	Rollback
	Connection
	RollbackTrans

	DBEngine
	CreateWorkspace
	Connection
	Open

	DBEngine
	OpenDatabase
	Connection
	Open

	DBEngine
	SetOption
	Connection
	Properties

	Workspace
	LoginTimeout
	Connection
	ConnectionTimeout

	Workspace
	BeginTrans
	Connection
	BeginTrans

	Workspace
	CommitTrans
	Connection
	CommitTrans

	Workspace
	Rollback
	Connection
	RollbackTrans

	Workspace
	Close
	Connection
	Close

	Workspace
	OpenDatabase
	Connection
	Open

	Database
	Connect
	Connection
	ConnectionString

	Database
	Name
	Connection
	Data Source

	Database
	QueryTimeout
	Connection
	CommandTimeout

	Database
	RecordsAffected
	Connection
	Execute(RecordsAffected)

	Database
	Transactions
	Connection
	Transaction DDL

	Database
	Updatable
	Connection
	Mode

	Database
	Version
	Connection
	DBMS Version

	Database
	Close
	Connection
	Close

	Database
	Execute
	Connection
	Execute

	Database
	OpenRecordset
	Recordset
	Open

	Recordset
	AbsolutePosition
	Recordset
	AbsolutePosition

	Recordset
	BOF
	Recordset
	BOF

	Recordset
	EOF
	Recordset
	EOF

	Recordset
	Bookmark
	Recordset
	Bookmark

	Recordset
	Bookmarkable
	Recordset
	Supports

	Recordset
	EditMode
	Recordset
	EditMode

	Recordset
	Filter
	Recordset
	Filter

	Recordset
	Index
	Recordset
	Index

	Recordset
	LockEdits
	Recordset
	LockType

	Recordset
	NoMatch
	Recordset
	Find

	Recordset
	RecordCount
	Recordset
	RecordCount

	Recordset
	RecordStatus
	Recordset
	EditMode

	Recordset
	Sort
	Recordset
	Sort

	Recordset
	Type
	Recordset
	CursorType

	Recordset
	Updatable
	Recordset
	Recordset.Supports(adUpdate)

	Recordset
	AddNew
	Recordset
	AddNew

	Recordset
	CancelUpdate
	Recordset
	CancelUpdate

	Recordset
	Clone
	Recordset
	Clone

	Recordset
	Close
	Recordset
	Close

	Recordset
	CopyQueryDef
	Recordset
	Source

	Recordset
	Delete
	Recordset
	Delete

	Recordset
	FindFirst
	Recordset
	Find

	Recordset
	FindLast
	Recordset
	Find

	Recordset
	FindNext
	Recordset
	Find

	Recordset
	FindPrevious
	Recordset
	Find

	Recordset
	GetRows
	Recordset
	GetRows

	Recordset
	Move
	Recordset
	Move

	Recordset
	MoveFirst
	Recordset
	MoveFirst

	Recordset
	MoveLast
	Recordset
	MoveLast

	Recordset
	MoveNext
	Recordset
	MoveNext

	Recordset
	MovePrevious
	Recordset
	MovePrevious

	Recordset
	OpenRecordset
	Recordset
	Open

	Recordset
	Requery
	Recordset
	Requery

	Recordset
	Seek
	Recordset
	Seek

	Recordset
	Update
	Recordset
	Update

	QueryDef
	MaxRecords
	Command
	MaxRecords

	QueryDef
	RecordsAffected
	Command
	Execute(RecordsAffected)

	QueryDef
	SQL
	Command
	CommandText

	QueryDef
	Execute
	Command
	Command.Execute

	QueryDef
	OpenRecordset
	Recordset
	Open

Common Operations

This section introduces some common operations that are performed in an ODBCDirect workspace, and how they are performed in ADO. Samples that are developed in either technology are provided for users who will migrate from DAO and ODBCDirect to ADO and OLE DB. Connect these samples to SQL Server or MSDE with a trusted connection.

Working with Cursors

A cursor requires temporary resources to hold its data. If these resources are stored on the client computer, the cursor is called a client-side cursor. Some server database engines, such as SQL Server 6.0, support server-side cursors. With this cursor type, the server manages the result set with resources that are located on the server itself. Table 2 shows the DefaultCursorDriver property in ODBCDirect compared to the CursorLocation property in ADO:

Table 2

	DefaultCursorDriver Enumeration in ODBCDirect
	Description
	CursorLocation Enumeration in ADO
	Description

	dbUseODBCCursor
	Client-side cursors
	adUseClient
	Client-side cursors

	dbUseServerCursor
	Server-side cursors
	adUseServer
	Server-side cursors

	dbUseClientBatchCursor
	Client batch cursors. Required for batch updates
	adUseClientBatch
	Hidden; equivalent of adUseClient

	dbUseNoCursor
	Forward-only, read-only Recordset
	adUseNone
	Hidden; undocumented, and unsupported

	dbUseDefaultCursor
	Server-side cursors if the server supports them, otherwise, client-side cursors
	N/A
	N/A

Table 3 shows the four cursor types in ADO that are equivalent to the cursor types in ODBCDirect workspaces:

Table 3

	Cursor Type in ODBCDirect
	Cursor Type in ADO
	Description

	dbOpenForwardOnly
	adOpenForwardOnly
	Opens a Recordset that supports scrolling forward only

	dbOpenSnapShot
	adOpenStatic
	Supports scrolling forward and backward; changes made by other users are not visible

	dbOpenDynaset
	adOpenKeyset
	Supports scrolling forward and backward; modifications and deletions made by other users are visible

	dbOpenDynamic
	adOpenDynamic
	Supports scrolling forward and backward; modifications, deletions and insertions made by other users are visible

When you open a Recordset object, you can also specify the type of record locking that you want to use. Table 4 lists the lock type constants in both DAO and ADO:

Table 4

	Lock Type in ODBCDirect
	Lock Type in ADO
	Description

	dbReadOnly
	adLockReadOnly
	Default; the Recordset is read-only

	dbPessimistic
	adLockPessimistic
	The page that contains the record that is being edited is locked as soon as that record is being edited

	dbOptimistic
	adLockOptimistic
	The data is not locked until Update is called

	dbOptimisticBatch
	adLockBatchOptimistic
	Modification to your data is cached until UpdateBatch is called

	dbOptimisticValue
	N/A
	The cursor compares data values in old and new records to determine if changes have been made since the record was last accessed

Opening Asynchronous Connections

DAO

ODBCDirect workspaces allow you to open connections asynchronously, which consumes less time. To reduce the time that users have to wait until the connection completes or until an error occurs, you can open a connection asynchronously. To do this, specify the dbRunAsync constant for the Options argument of the OpenConnection method, as shown in the following example:

Dim wrk As DAO.Workspace

Dim cnn As DAO.Connection

Dim strConnect As String

Set wrk = DBEngine.CreateWorkspace("NewODBCWrk", "Admin", "", dbUseODBC)

strConnect = "ODBC;DSN=Pubs;DATABASE=Pubs;UID=;PWD=;"

Set cnn = wrk.OpenConnection("", dvDrivernoprompt + dbRunAsync, False, strConnect)

ADO

If you want to connect to your database asynchronously in ADO, use the adAsyncConnect constant for the Options argument of the Connection.Open method, as shown in the following example:

Dim cnn As ADODB.Connection

Dim cmd As ADODB.Command

Dim strConnect As String

Set cnn = New ADODB.Connection

strConnect = "Provider=sqloledb; Data Source=myServerName; Initial Catalog=myDatabaseName; Integrated Security=SSPI;"

cnn.ConnectionString = strConnect

cnn.Open adAsyncConnect

Running Asynchronous Queries

DAO

ODBCDirect allows you to run asynchronous queries, so that users can continue to use your application while the query is running. To run an asynchronous query, specify the dbRunAsync constant for the Options argument of the Execute method of either the Connection object or the QueryDef object. When you run a query asynchronously, you can use the StillExecuting property to determine if the query has completed. Use the Cancel method if you want to cancel an asynchronous query, as shown in the following example:

Private Sub DAOAsyncQuery()

 Dim wrk As DAO.Workspace

 Dim cnn As DAO.Connection

 Dim strConnect As String

 Dim err As Error

 On Error GoTo Err_DAOAsyncQuery

 Set wrk = DBEngine.CreateWorkspace("NewODBCWrk", "Admin", "", dbUseODBC)

 strConnect = "ODBC;DSN=Pubs;DATABASE=Pubs;UID=;PWD=;"

 Set cnn = wrk.OpenConnection("", dvDrivernoprompt, False, strConnect)

 cnn.Execute "select * from Employees", dbRunAsync

 'Perform other tasks

 If cnn.StillExecuting Then

 cnn.Cancel

 End If

Exit_DAOAsyncQuery:

 On Error Resume Next

 cnn.Close

 wrk.Close

 Exit Sub

Err_DAOAsyncQuery:

 For Each err In DBEngine.Errors

 Debug.Print err.Number, err.Description

 Next err

 Resume Exit_DAOAsyncQuery

End Sub

ADO

To run an asynchronous query in ADO, you can specify the adAsyncExecute constant for the Options argument of the Execute method of either the Connection object or the Command object. You can check the State property of the Command object to determine if the query has completed.

Note In DAO, the DBEngine object contains the Errors collection. In the following example in ADO, the Connection object contains the Errors collection:

Private Sub ADOAsyncQuery()

 Dim cnn As ADODB.Connection

 Dim cmd As ADODB.Command

 Dim rst As ADODB.Recordset

 Dim err As ADODB.Error

 Dim strConnect As String

 On Error GoTo Err_ADOAsyncQuery

 Set cnn = New ADODB.Connection

 strConnect = "Provider=sqloledb; Data Source=myServerName; Initial Catalog=pubs; Integrated Security=SSPI"

 cnn.ConnectionString = strConnect

 cnn.Open

 Set cmd = New ADODB.Command

 cmd.ActiveConnection = cnn

 cmd.CommandText = "DELETE FROM Sales WHERE qty < 5"

 cmd.Execute , , adAsyncExecute

 'Perform other tasks

 If cmd.State = adStateExecuting Then

 cmd.Cancel

 End If

Exit_ADOAsyncQuery:

 On Error Resume Next

 cnn.Close

 Exit Sub

Err_ADOAsyncQuery:

 For Each err In cnn.Errors

 Debug.Print err.Number, err.Description

 Next err

 Resume Exit_ADOAsyncQuery

End Sub

Using Batch Optimistic Updating

DAO

Batch optimistic updating is editing multiple records that are cached locally, and then submitting these records to the server in a single batch for updating. To do this in ODBCDirect, you must set the DefaultCursorDriver property of the workspace to dbUseClientBatchCursor, and then specify dbOptimisticBatch in the Lockedits argument when you open a Recordset. When you are ready to update the data source, call the Update method on the Recordset object, and specify dbUpdateBatch for the Type argument.

The following example illustrates how to use batch optimistic updating in ODBCDirect:

Private Sub DAO_BatchUpdate()

Dim wrk As DAO.Workspace

Dim cnn As DAO.Connection

Dim rst As DAO.Recordset

Dim strConnect As String

Set wrk = DBEngine.CreateWorkspace("NewODBCWrk", "Admin", "", dbUseODBC)

wrk.DefaultCursorDriver = dbUseClientBatchCursor

strConnect = "ODBC;DSN=Pubs;DATABASE=Pubs;UID=;PWD=;"

Set cnn = wrk.OpenConnection("", dvDrivernoprompt, False, strConnect)

Set rst = cnn.OpenRecordset("SELECT au_id, state FROM Authors WHERE state = 'CA'", dbOpenDynaset, 0, dbOptimisticBatch)

Do Until rst.EOF

 rst.Edit

 rst!state = "NC"

 rst.Update

 rst.MoveNext

Loop

rst.Update dbUpdateBatch

rst.Close

cnn.Close

wrk.Close

End Sub

ADO

To implement batch optimistic updating in ADO, specify client-side for the cursor location, and specify adLockBatchOptimistic for the lock type. When you are ready to update the data source, call the UpdateBatch method on the Recordset object.

The following example illustrates how to use batch optimistic updating in ADO:

Private Sub ADO_BatchUpdate()

Dim cnn As ADODB.Connection

Dim rst As ADODB.Recordset

Dim strConnect As String

Set cnn = New ADODB.Connection

strConnect = "Provider=sqloledb; Data Source=myServerName; Initial Catalog=Pubs; Integrated Security=SSPI;"

cnn.ConnectionString = strConnect

cnn.Open

Set rst = New ADODB.Recordset

rst.CursorLocation = adUseClient

rst.Open "SELECT au_id, state FROM Authors WHERE state = 'CA'", cnn, adOpenStatic, adLockBatchOptimistic

Do Until rst.EOF

 rst!state = "NC"

 rst.Update

 rst.MoveNext

Loop

rst.UpdateBatch

rst.Close

cnn.Close

End Sub

Working with Stored Procedures

DAO

You can use ODBCDirect QueryDef objects to run stored procedures. QueryDef objects support stored procedures that have both input parameters and return values.

The following example creates a stored procedure named UpdateAuthors, and executes this procedure through a QueryDef object:

Private Sub DAO_SP()

Dim wrk As DAO.Workspace

Dim cnn As DAO.Connection

Dim qdf As DAO.QueryDef

Dim strConnect As String, strSQL As String

Set wrk = DBEngine.CreateWorkspace("NewODBCWrk", "Admin", "", dbUseODBC)

strConnect = "ODBC;DSN=Pubs;DATABASE=Pubs;UID=;PWD=;"

Set cnn = wrk.OpenConnection("", dvDrivernoprompt, False, strConnect)

strSQL = "CREATE PROCEDURE UpdateAuthors @state Char(2) AS " _

& "UPDATE Authors " _

& "SET state = 'FL'" _

& "WHERE state = @state"

cnn.Execute strSQL

Set qdf = cnn.CreateQueryDef("qry", "{ call UpdateAuthors(?) }")

qdf.Parameters(0).Value = "NC"

qdf.Execute

cnn.Close

wrk.Close

End Sub

ADO

In ADO, use the Command object to execute stored procedures with input parameters, return values, and output parameters.

The following example creates a stored procedure named UpdateAuthors, and executes this procedure through a Command object:

Private Sub ADO_SP()

Dim cnn As ADODB.Connection

Dim cmd As ADODB.Command

Dim strConnect As String, strSQL As String

Set cnn = New ADODB.Connection

strConnect = "Provider=sqloledb; Data Source=myServerName; Initial Catalog=Pubs; Integrated Security=SSPI;"

cnn.ConnectionString = strConnect

cnn.Open

strSQL = "CREATE PROCEDURE UpdateAuthors @state Char(2) AS " _

& "UPDATE Authors " _

 & "SET state = 'FL'" _

& "WHERE state = @state"

cnn.Execute strSQL

Set cmd = New ADODB.Command

cmd.ActiveConnection = cnn

cmd.CommandText = "{ call UpdateAuthors(?) }"

cmd.Parameters.Refresh

cmd.Parameters(0).Value = "NC"

cmd.Execute

cnn.Close

End Sub

For More Information

For the latest information about migrating DAO to ADO, see the following resources:

· Migrating from DAO to ADO and Using ADO with the JET Provider
http://msdn.microsoft.com/library/techart/daotoadoupdate.htm
· Q225048, “INFO: Issues Migrating from DAO/JET to ADO/JET”
http://support.microsoft.com/support/misc/kblookup.asp?id=Q225048

· Q181832, “PRB: Migrating SQL Statements with Quotes from DAO to ADO”
http://support.microsoft.com/support/misc/kblookup.asp?id=Q181832
· Q184233, “INFO: Using ActiveX Data Objects (ADO) Through
Microsoft Access 97”
http://support.microsoft.com/support/misc/kblookup.asp?id=Q184233
� EMBED MSPhotoEd.3 ���

� EMBED MSPhotoEd.3 ���

�The indent looks wrong to me. Shouldn’t all the rst, cnn, and wrk lines be the same indent? I’m not sure whether Loop should stay at the same level as Do. Same comment for the next code sample.

[image: image4.png]

[image: image5.png]Connection

H Erors Error
L[Properties Property.
Command

HParameters Parameter
L[Properties Property.

Field
L[Properties Property.
Record

== Field

Stream

_1091015945.bin

_1091016165.bin

_931945241.wmf

